INDIAN SCHOOL MUSCAT

FIRST PRE-BOARDEXAMINATION

JANUARY 2021

SET A

CLASS XII

Marking Scheme – SUBJECT[THEORY]

Q.N O.	Answers	Marks (with
		split
1.	$\vec{p} - v\vec{F}$	1 up)
2	$\overrightarrow{F} \rightarrow \overrightarrow{X}$	$\frac{1}{1/2+1/2}$
2.	$\mathbf{F} = \mathbf{q}(\mathbf{V} \times \mathbf{B})$	/21/2
	Here q is the magnitude of the moving charge.	
	The direction of the magnetic force is perpendicular to the plane containing the velocity	
	vector \mathbf{V}' and the magnetic field vector $\mathbf{B}'.$	
		OR
	OR	1
	Magnetic equator	
3.	$\tan \delta = \frac{Bv}{2} = \sqrt{3}$ $\delta = 60^{\circ}$	1
	Bh VO VO VO	
4.	Negative	1
5.	Remains same	1
	OR	OR
	$3\sqrt{2} A$ or 4.24 A (1/2 mark for formula)	$\frac{1}{2} + \frac{1}{2}$
6	(i) UV (ii) ID	1/2 + 1/2
0.	(1) UV (11) IK Infrared wayses are produced by bot bodies and molecules, so are referred to as beat wayses	$\frac{72+72}{1}$
7.	OR	OR
	5×10^{14} Hz, visible region.	$\frac{1}{2} + \frac{1}{2}$
8.	Convex lens	1
9.	Curves a and b have different intensities but same stopping potential, so curves 'a' and 'b'	1
	have same frequency but different intensities.	OR
	OR	
	$KE = 2x1.6x10^{-19} = 3.2x10^{-19} J$	1/2+1/2
10.	Depletion region widens under reverse bias.	1
11.	a	
12.	d	
13.	a	1
14.		
15.	1. C The drift speed decreases on moving from A to B	I mark

	 C i /2 C does not change A 16:1 B 6.25×10¹⁸ 	each (Any 4)
16.	 (b) Diffraction fringes become narrower and crowded (b) should be of the order of wavelength. (b) sharper and brighter (a)Diffraction of sound (a)interfere constructively at the centre of the shadow 	1 mark each (Any 4)
17.	Derivation U=Q ² /2C Energy density of the capacitor is the energy stored in a capacitor per unit volume. OR Derivation $\iota = p E \sin \theta$ with diagram	1 ¹ / ₂ ¹ / ₂
	The electric dipole will attain stable equilibrium when the dipole moment is in the direction of the electric field	$1 \frac{1}{2}$ $\frac{1}{2}$
18.	(a) A toroid is a solenoid bent into the form of a closed ring. The magnetic field lines of solenoid are straight lines parallel to the axis inside the solenoid.	1
	(b) Inside a given solenoid the magnetic field may be made strong by (i) passing large current and (ii) using laminated coil of soft iron.	1
19.	Diagram showing magnetic elements of earth (i) magnetic declination -definition (ii) angle of dip-definition	1 1/2 1/2
	OR	
	Formula Calculation Answer (60 ⁰)	1/2 1/2 1
20.	 (i) Capacitive reactance increases, impedance increases and so current decreases, brightness of the bulb reduces. (ii) When frequency decreases capacitive reactance increases, impedance increases and so current decreases, brightness of the bulb reduces. 	$\frac{1}{2} + \frac{1}{2}$ $\frac{1}{2} + \frac{1}{2}$
21.	Gamma ray has the highest frequency in the electromagnetic waves. These rays are of the nuclear origin and are produced in the disintegration of radioactive atomic nuclei and in the decay of certain subatomic particles. They are used in the treatment of cancer and tumours.	1/2 1/2 1/2
	UV rays	1/2
22.	schematic ray diagram of a reflecting type telescope with labelling	2
23.	Focal length will be doubled. Power will be halved.	1 1
	If the student has applied len's maker's formula, reward 1/2 mark	

Page 3 of 8

	resistance of resistor X is 8.2Ω .			
(iii)	i)			
Th	he connection between resistors in a Wheatstone or metre bridge is made of thick copper strips to inimize the resistance of connection, which is not taken into consideration in the formula.	1		
27. (i)g	getting the equation	2		
λ	$h = \frac{h}{\sqrt{2meV}}$			
(ii) v	$egin{aligned} & \phi_0 = rac{\phi_0}{h} = rac{2.14 eV}{6.63 imes 10^{-34} Js} \ & = rac{2.14 imes 1.6 imes 10^{-19} J}{6.63 imes 10^{-34} Js} = 5.16 imes 10^{14} Hz \end{aligned}$	1⁄2+ 1⁄2		
	OR			
Ei	instein's Photoelectric equation,			
	$hv = \phi_0 + k_{\max}$	1⁄2		
	 For a given photosensitive material and frequency of incident radiation (above the threshold frequency), the photoelectric current is directly proportional to the intensity of incident light. 	1/2		
 (ii) For a given photosensitive material and frequency of incident radiation, saturation current is found to be proportional to the intensity of incident radiatio whereas the stopping potential is independent of its intensity. 				
	Energy of one photon = hv	1/2		
	$= (6.6 \times 10^{-54}) \times (6.0 \times 10^{14})$ Number of photons emitted per sec			
	Power	1/2		
	= Energy of one photon			
	$n = \frac{2 \times 10^{-3}}{(6.6 \times 10^{-34}) \times (6.0 \times 10^{14})} \therefore n = 5 \times 10^{15}$	1/2		
28. (i)		1/2		
		1⁄2		

Page **4** of **8**

	$R = R_0 A^{1/3}$	
	$\therefore \qquad \text{Density } \rho = \frac{mA}{\frac{4}{3}\pi \left(R_0 A^{1/3}\right)^3}$	
	$=\frac{m}{\frac{4}{3}\pi R_0^3}$	
	Hence p is independent of A.	1/2+ 1/2
	(Here m is the mass of the nucleus.)	
	lsotopes Isobars	
	The nuclides having the same atomic number Z but different atomic masses (A) are called isotopes. Examples : ${}_{1}{}^{1}$ H, ${}_{1}{}^{2}$ H, ${}_{1}{}^{3}$ H	
	(i) OR	1graph
		¹ / ₂ + ¹ / ₂ labellin g
	+100 Repulsive	
	MeV ₀ D	
	-100 C 1 2 3 4	1/2
	(i) If the distance $r > 0.8$ fm the nuclear force is attractive	1/2
	(ii) If the distance between the nucleons $r < 0.8$ fm. The nuclear force is repulsive.	
9.	 (i) schematic diagram of a step-up transformer. (ii) Definition of mutual induction (iii) Expression for the secondary to primary voltage in terms of the number of turns in the two 	1 1 1

30.	According to Bohr's postulates, in a hydrogen atom, a single electron revolves around a nucleus of charge +e. For an electron moving with a uniform speed in a circular orbit on a given radius, the centripetal force is provided by the Coulomb force of attraction between the electron and the nucleus.		
	Therefore,		
	$\frac{mv^2}{r} = \frac{1 (Ze) (e)}{4 \pi \epsilon_o r^2} \qquad \dots (1)$		
	$\Rightarrow mv^2 = \frac{1}{4\pi\epsilon_o} \frac{Ze^2}{r}$		
	So,		
	Kinetic energy, K.E. = $\frac{1}{2}mv^2$		1
	$K.E = \frac{1}{4\pi\epsilon_o} \frac{Ze^2}{r}$		
	Potential energy is given by, P.E = $\frac{1}{4\pi\epsilon_o} \frac{(Ze)(-e)}{r} = \frac{1}{4\pi\epsilon_o} \frac{(Ze)(-e)}{r}$		1⁄2
	Therefore, total energy is given by, E = K.E + P.E = $\frac{1}{4\pi\epsilon_o}\frac{Ze^2}{2r} + \left(-\frac{1}{4\pi\epsilon_o}\frac{Ze^2}{r}\right)$		
	$E = -\frac{1}{4\pi\epsilon_o} \frac{Ze^2}{2r}$, is the total energy.		1⁄2
	$\Rightarrow r_n = \frac{\epsilon_o h^2 n^2}{\pi m Z e^2}$		1/2
	Now, putting value of rn in equation (2)		
	$E_{n} = -\frac{1}{4\pi\epsilon_{o}} \frac{Ze^{2}}{2\left(\frac{\epsilon_{o}h^{2}n^{2}}{\pi m}\right)}$		
	$= -\frac{mZ^2e^4}{8\epsilon p^2n^2}$		1/2
31.	(a) Definition- mutual inductance and S.I. unit-Henry (b) Deriving an expression for the mutual inductance of two long on axial as	longida of como	1/2 + 1/2
	length wound oneover the other.	denotus of same	2
	$\frac{\mu_0 N_1 N_2 A_2}{I}$		
	Given, radius = 15cm, cross - section = 12cm^2 , N = 1200		
	The self inductance of toroid is given by:		1.1
	$l = rac{\mu_0 N^2 A}{2} = rac{2 imes 10^{-7} (1200)^2 imes 12 imes 10^{-4}}{2} = 0.000023 = 2.3 \mathrm{mH}$		1+1
	$2\pi r$ 0.15		

Page **6** of **8**

